又有一个多月的时间了呢 = = 刚想起来还欠着一篇文章没写,趁着没忘干净赶紧补上

先上样卡(A4,扫描图片为600dpi)

整体并不是很复杂,但一口气手工切40+张也是够累,所以想办法自己写了个识别程序 opencv是个功能丰富的开源库,这里主要用到查找边界的功能。

opencv的原生api支持c、java、python,python 比较易于调试,所以选择了它。这里使用 python 2.7。 对于有编程经验的人来讲,python 比较容易入门,基本上摸索十分钟左右就可以了(靠谱的IDE也是重要条件嗯)

首先下载 opencv 和 numpy,numpy 装好可以直接用,opencv 要到 build/python 下找到相应的文件复制到项目目录 P.S. 如果运行出错的话,要注意 python、numpy、opency 的平台版本需保持一致

因为图片整体结构比较简单,而且定位点都是矩形,所以用了比较简单的方法,把边界都抽象为矩形处理。 大概流程是这样(findPoint.py 代码后附):

引入依赖

import findPoint
import cv2

图片修正(根据四角的定位点修正图片倾斜)

img, rects = findPoint.process_img(findPoint.read_file(dir+source))
fixed = findPoint.fix_image(img, rects)

查找四角定位点

img, rects = findPoint.process_img(fixed)

height,width,ch = img.shape
points = findPoint.find_corner_points(width, height, rects)

移除无关的矩形

rects = findPoint.remove_rects(rects, points[0].x_max + 10, points[3].x_min - 10, points[0].y_max + 10, points[3].y_min - 10)

分别取出 x、y 轴定位点并排序(分别对应上、左两部分)

x_points = findPoint.remove_rects(rects, 0, width, points[0].y_max + 10, height)
y_points = findPoint.remove_rects(rects, points[0].x_max + 10, width, 0, height)

x_points.sort(lambda a,b: a.x_min - b.x_min)
y_points.sort(lambda a,b: a.y_min - b.y_min)

然后就可以根据定位点切分图片了

# match 为预定义的切分规则
match = ['student_15',
        ['1', [2, 4], [0, [0, 380]]],
        ['2', [0, 4], [[1, -200], 1]],
        ['3', [1, 2], [2, 2]],
        ['4', [1, 3], [3, 3]],
        ['5', [0, 2], [[4, -400], 4]]
]

def parse_point(direction, type, point, points):
    if isinstance(point, list):
        return parse_point(direction, type, point[0], points) + point[1]

    if direction == 'x':
        if type == 'min':
            return points[point].x_min
        else:
            return points[point].x_max
    else:
        if type == 'min':
            return points[point].y_min
        else:
            return points[point].y_max

for i in range(1, len(match)):
    x_min = parse_point('x', 'min', match[i][1][0], x_points)
    x_max = parse_point('x', 'max', match[i][1][1], x_points)
    y_min = parse_point('y', 'min', match[i][2][0], y_points)
    y_max = parse_point('y', 'max', match[i][2][1], y_points)

    newimg = img[y_min:y_max, x_min:x_max, :]
    cv2.imwrite(match[i][0] + '.png', newimg)
findPoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import cv2
import math

def square(num):
    return num*num

class Rect:
    def __init__(self, x_min, x_max, y_min, y_max):
        self.x_min = x_min
        self.x_max = x_max
        self.y_min = y_min
        self.y_max = y_max

    def __repr__(self):
        return "x: " + np.str(self.x_min) + " ~ " + np.str(self.x_max) + " y: " + np.str(self.y_min) + " ~ " + np.str(self.y_max) + "\n"

    def __str__(self):
        return "x: " + np.str(self.x_min) + " ~ " + np.str(self.x_max) + " y: " + np.str(self.y_min) + " ~ " + np.str(self.y_max) + "\n"

    def distance(self, point):
        dis = 0
        if point[0] < self.x_min:
            dis += self.x_min - point[0]
        elif point[0] > self.x_max:
            dis += point[0] - self.x_max

        if point[1] < self.y_min:
            dis += self.y_min - point[1]
        elif point[1] > self.y_max:
            dis += point[1] - self.y_max

        return dis

    def distance_math(self, point):
        dis = 0
        if point[0] < self.x_min:
            dis += square(self.x_min - point[0])
        elif point[0] > self.x_max:
            dis += square(point[0] - self.x_max)

        if point[1] < self.y_min:
            dis += square(self.y_min - point[1])
        elif point[1] > self.y_max:
            dis += square(point[1] - self.y_max)

        return math.sqrt(dis)

    def center(self):
        return [(self.x_min+self.x_max)/2, (self.y_min+self.y_max)/2]

def line_to_rect(line):
    x_min=x_max=y_min=y_max=-1
    for point in line:
        if x_min == -1:
            x_min = x_max = point[0][0]
            y_min = y_max = point[0][1]
        else:
            x_min = min(x_min, point[0][0])
            x_max = max(x_max, point[0][0])
            y_min = min(y_min, point[0][1])
            y_max = max(y_max, point[0][1])
    return Rect(x_min, x_max, y_min, y_max)

def remove_non_rect(width, height, contours):
    rects = []
    for line in contours:
        _r=line_to_rect(line)
        if _r.x_min < 20 or _r.y_min < 20 or _r.x_max > width-20 or _r.y_max > height-20:
            continue

        xd = _r.x_max-_r.x_min
        yd = _r.y_max-_r.y_min
        if min(xd, yd) < 15:
            continue

        diff = 10
        xmin = _r.x_min + diff
        xmax = _r.x_max - diff
        ymin = _r.y_min + diff
        ymax = _r.y_max - diff
        for point in line:
            if xmin < point[0][0] < xmax and ymin < point[0][1] < ymax:
                diff = -1
                break
        if diff != -1:
            rects.append(_r)
    return rects

def read_file(filename):
    img=cv2.imread(filename)
    return img

def process_img(img):
    grey=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    retval,grey=cv2.threshold(grey,80,255,cv2.THRESH_BINARY_INV)

    grey=cv2.erode(grey,None)
    grey=cv2.dilate(grey,None)

    _,contours,hierarchy=cv2.findContours(grey,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

    rows,cols,ch = img.shape
    return img, remove_non_rect(cols, rows, contours)

def calculate_distance(width, height, rect):
    return [rect.distance([0,0]), rect.distance([width,0]), rect.distance([0,height]), rect.distance([width,height])]

def find_corner_points(width, height, rects):
    result  = [None, None, None, None]
    distance = [None, None, None, None]
    for rect in rects:
        if result[0] is None:
            result = [rect, rect, rect, rect]
            distance = calculate_distance(width, height, rect)
        else:
            _dis = calculate_distance(width, height, rect)
            for i in range(4):
                if _dis[i] < distance[i]:
                    distance[i] = _dis[i]
                    result[i] = rect
    return result

def draw_rects(img, rects, output):
    print(img.shape)
    rows = img.shape[0]
    cols = img.shape[1]
    img = img[:]
    for index,rect in enumerate(rects):
        img = cv2.rectangle(img, (rect.x_min,rect.y_min), (rect.x_max,rect.y_max), (0,255,0), 3)
        img = cv2.putText(img,str(index),(rect.x_max+5,rect.y_max+5), cv2.FONT_HERSHEY_SIMPLEX, 2,(255,255,0), 3)
    points = find_corner_points(cols, rows, rects)
    if len(rects) > 0:
        for rect in points:
            img = cv2.rectangle(img, (rect.x_min,rect.y_min), (rect.x_max,rect.y_max), (0,255,255), 5)
    #cv2.imshow('hello', img)
    cv2.imwrite(output + ".png", img)
    cv2.waitKey(0)

def fix_image(img, rects):
    rows,cols,ch = img.shape

    points = find_corner_points(cols, rows, rects)
    tl = points[0]
    tl_c = tl.center()
    tr = points[1]
    tr_c = tr.center()
    bl = points[2]
    bl_c = bl.center()
    pts1 = np.float32([tl_c, tr_c, bl_c])
    pts2 = np.float32([tl_c, [tl_c[0] + tl.distance_math(tr_c), tl_c[1]], [tl_c[0], tl_c[1] + tl.distance_math(bl_c)]])
    M = cv2.getAffineTransform(pts1,pts2)
    dst = cv2.warpAffine(img,M,(cols,rows))
    return dst

def remove_rects(rects, x_min, x_max, y_min, y_max):
    valid_rects = []
    for rect in rects:
        if x_min < rect.x_max < x_max and y_min < rect.y_max < y_max or x_min < rect.x_min < x_max and y_min < rect.y_min < y_max:
            continue
        valid_rects.append(rect)
    return valid_rects